Anal. Chem. 2000, 72, 3821–3825.

Effects of Molecular Oxygen on Multiphoton-Excited Photochemical Analysis of Hydroxyindoles

M. L. Gostkowski, T. Curey, E. Okerberg, T. Kang, D. A. Vanden Bout, J. B. Shear

We have examined the effects of dissolved molecular oxygen on multiphoton-excited (MPE) photochemical derivatization of serotonin (5HT) and related cellular metabolites in various buffer systems and find that oxygen has a profound effect on the formation efficiency of visible-emitting photoproducts. Previously, end-column MPE photoderivatization provided low mass detection limits for capillary electrophoretic analysis of hydroxyindoles, but relied on the use of Good's buffers to generate high-sensitivity visible signal. In the present studies, visible emission from 5HT photoderivatized in different buffers varied by 20-fold under ambient oxygen levels but less than 2-fold in the absence of oxygen; oxygen did not significantly alter the photoproduct excited-state lifetime (approximately 0.8 ns). These results support a model in which oxygen interferes with formation of visible-emitting photoproducts by quenching a reaction intermediate, an effect that can be suppressed by buffer molecules. Deoxygenation of capillary electrophoresis separation buffers improves mass detection limits for 5-hydroxyindoles fractionated in 600-nm channels by approximately 2-fold to < or =30000 molecules and provides new flexibility in identifying separation conditions for resolving 5HT from molecules with similar electrophoretic mobilities, such as the catecholamine neurotransmitters.

PubMed | Anal. Chem.