CURRENT ISSUE

& Engineering News

CHEMJOBS JOIN ACS

EMAIL ALERTS ADVANCED SEARCH

CHEMICAL &

CHEMJOBS

E-mail this article

to a friend

Print this article

E-mail the editor

NEWS

ENGINEERING

cen-chemjobs.org

Search

Go!

- Latest News
- Business

HOME

- Government & Policy
- Science/Technology
- Career & Employment
- ACS News

November 15, 2004 Vol. 82, Iss. 46 View Current Issue

Back Issues

2004 ‡

SUPPORT

- How to log in
- Contact Us
- Site Map

ABOUT C&EN

- About the Magazine
- How to Subscribe
- How to Advertise
- Chemcyclopedia

Science Concentrates

November 15, 2004 Volume 82, Number 46 p. 32

- Forsterite synthesis revisited
- Cross-linking protein matrix directs neuron growth
- Spiny growth mechanism revealed
- Berberine cuts cholesterol
- Assay route to better enzymes

Forsterite synthesis revisited

Forsterite (Mg₂SiO₄) is a form of the mineral olivine used as an insulator in high-frequency electronics and other applications. When doped with chromium, it is used in laser optics. Forsterite typically is made from MgO and SiO₂ by solid-state synthesis above 1,100 °C. Now, a research team led by Raymond Whitby of the University of Sussex, in England, has

@ RSC 2004

devised a lower temperature method to make forsterite that produces leaflike microstructures with a geometric ordering that hasn't been seen before [Chem. Commun., 2004, 2396]. The team loaded a reaction tube with two separate reactants--a Mg/I₂ mixture and amorphous SiO₂-spaced 20 cm apart. Under a helium atmosphere, the Mg/I₂ powder was heated to 800 °C and the SiO2 was heated to 600 °C, creating a temperature gradient. Cabbagelike Mg₂SiO₄ crystals formed (shown), as well as catenated crystals that resemble segmented earthworms. The researchers believe MgI₂ is formed as an intermediate species that ferries Mg to SiO₂ nucleation sites, where the forsterite crystals grow. They have shown that the synthesis is reproducible and plan to continue to investigate the nanoscale growth mechanism and to prepare chromiumdoped forsterite.

Cross-linking protein matrix directs neuron growth

Neuroscientists often use simplified model systems to study how neurons work. A common approach is to develop cell cultures on a planar substrate and allow a small number of neurons to interact and develop into circuits. The ability to direct the development of neurons in such cultures with micrometer-scale resolution would be a powerful tool. Working toward that goal, Jason B. Shear, associate professor of chemistry and biochemistry at the University of Texas, Austin, and coworkers are using a multiphoton method to excite photosensitizers that promote the cross-linking of various proteins into a matrix from a solution in which neurons are growing [Proc. Natl. Acad. Sci. USA, 101, 16104] (2004)]. "We can create physical structures that cells interact with and respond to," Shear says. Even the simplest cross-linked protein matrices consisting of low-profile lines could be used to redirect the growth of neurons. "We're actively working on adapting this for a more sophisticated system that is a combination of both physical and chemical cues," Shear says.